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Abstract—Various action recognition systems have been pro-
posed, but most of them are not feasible to be used in real-
time applications. Skeleton-based action recognition has a low
computational cost and is not affected by background changes.
As the pose estimation models are becoming faster (almost real-
time), a model was created with only 1.8M parameters named
DD-net, which uses the skeleton information to predict the action.
Recently an improved version of the model came out and was
named TD-net. The model is very rich with geometric-based
features but lacks motion-based features. To overcome this we
added two motion features in the model named acceleration and
velocity. These features were created using second order Taylor’s
approximation, in a window around the current frame. The
model accuracy was compared with DD-net, TD-net, and state-of-
the-art algorithms using three different datasets. An increase in
accuracy is observed for all three datasets (i.e 1.1% for SHERC,
1.7% for FPHAB and 2% for JHMDB) when compared with
TD-net.

Keywords—Action recognition; Sequential skeleton informa-
tion; Deep neural network; Motion features; Geometric features;
Feature fusion

I. INTRODUCTION

Action recognition systems use data from various types
of sensors to analyze and identify activities. An action can
be defined as a movement of a person’s body parts (1 or
many). This can be a single motion or a sequence of actions
being performed in a predefined order. Vision-Based action
recognition has become a very hot topic in the computer
vision community. Important applications are being developed,
including automatic video surveillance for security [1], remote
healthcare monitoring [2], and virtual reality [3]. Activities
can be self-contained or involve human-to-human or human-
to-object interaction. There are six subcategories of activities:
action, gesture, behavior, interaction (both human to human
and object), and group activity [4].

VAR uses computer vision techniques to identify activities
in a video sequence or image. VAR has the advantage over
wearable sensors-based AR as we are not bounded by sensors
mounted on the body. The research of Johansson [5] shows that
vision-based systems can detect the direction of the motion
along with various motion patterns for limbs. Johansson’s
work inspired most of the literature for human pose estimation
and action recognition [6]. Skeleton-based approaches when
compared with RGB-based approaches, have advantages as
they have low computational and memory requirements, plus

skeleton data is very discriminative when representing action.
There is no change in skeleton data due to background
changes. With the libraries like Open pose [7], Alpha Pose [8],
Hyper Pose [9], Blaze Pose [10], and Yolov7 [11] almost real-
time skeleton data can be obtained from a video stream. Due to
all these advantages of skeleton data, a lot of attention has been
toward approaches that use skeleton-based action recognition.

Many approaches are present in the literature for AR using
skeleton key points. The two main categories are handcrafted-
based and learning-based features engineering. For the first
category, features are extracted manually. In [12] features were
extracted using histograms of 3D joint positions. A new feature
was suggested by [13] that merged static pose, motion, and
offset of action. A descriptor using covariance was proposed
by [14] that captured the variation of joints over time. CovMIJ
was proposed by [15] that utilized Most Informative Joints
(MIJ), which represented features using covariance descriptor
and noise immunity. Relative and temporal derivatives of
joint positions were used by [16]. Joint velocity and position
covariance descriptors were combined by [17] which were
extracted from MIJ.

It is not possible to make a feature descriptor for all datasets
using handcrafted approaches. Deep learning can automate the
process of feature extraction, representation, and classification
using data in the raw state. [18] proposed a synthesized
CNN, that has three stages, in the first stage a view-invariant
transform is made using sequences, then a series of images are
created using the modified skeletons, and a CNN-based model
extract characteristics that are classified at the decision level
after deep fusion of features. A motion CNN was proposed
by [19] that used skeleton joints from two consecutive frames
along with the joint positions. A bi-directional RNN was
proposed by [20], the skeleton is divided into 5 subparts
representing different parts of the physical appearance, and fed
to individual subnets. Then the subnet representation is merged
and fed as input to the higher layers for the final decision.
Long Short-Term Memory (LSTM) was used by [21]. A graph
convolution network (GCN) was proposed by [22] that used
adaptive and attention-enhanced functions. However, CNN and
RNN mainly use image grids or vector sequences respectively,
hence they cannot exploit skeleton data structure in depth.
Were GCN’s based approach is computationally complex.
Most of these approaches suffer from high execution time or
very large model sizes hence they are not feasible in real-time978-1-6654-6472-7/23/$31.00 © 2023 IEEE
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TABLE I. SHAPE OF LAYERS AT VARIOUS STAGES

Stage JCD NCJ Slow Motion Fast Motion Velocity Acceleration
Input Feature 32 x J 32 X K x D 32 X K x D 16 X K x D 32 X K x D 32 X K x D

Conv1D (1, 2*filters) 32 X 128 32 X 128 32 X 128 16 X 128 32 X 128 32 X 128
Conv1D (3, filters) 32 X 64 32 X 64 32 X 64 16 X 64 32 X 64 32 X 64
Conv1D (1, filters) 16 X 64

Conv1D (1, filters)/2 16 X 64 16 X 64 16 X 64 16 X 64 16 X 64
Concatenate 16 X 384

2 x Conv1D (3, 2*filters)/2 8 X 128
2 x Conv1D (3, 4*filters)/2 4 X 256
2 x Conv1D (3, 8*filters) 4 X 512
Global average pooling 512

FC (128) 128
FC (Num-classes) Classes

applications. A lightweight model proposed by [23], can work
in real-world applications as it has only 1.8M parameters, and
works at a staggering 2,200 Frames per second (FPS). The
authors have implemented a simple model with three types
of features that are embedded in the model, these are joint
collection distances and slow and fast features. This model
was improved by [24] by adding a normalized cartesian joint
as a feature.

The proposed work is focused on further adding new fea-
tures to this model. After experimenting with a different set of
features we have seen an improvement by adding acceleration
and velocity as features to the existing model. Experiments
were done using datasets SHREC [25], FPHAB [26], and
JHMDB [27].

The paper is organized as: Section 2 explains the process
by which different features are made, section 3 presents
the implementation steps for training and datasets, then in
section 4 experimentation results are presented, and in the final
section, we give our conclusion and the future direction of the
research.

II. METHODOLOGY

In the network DD-net (Double-feature Double-motion Net-
work) [23], authors have used one geometric feature named
Joint Collection Distances (JCD), and two motion features
called Slow Motion, and Fast Motion features, in [24] authors
added another geometric feature named Normalized Cartesian
Joints (NCJ) and named there model TD-net (Triple-feature
Double-motion Network). In the proposed work, we have
added two new motion features, that are speed and accelera-
tion. These features are inspired by the work of [28]. Notations
in the paper are as follows:

• Number of skeletons in a sequence is represented as S;
• Number of joints in a skeleton is represented as K;
• Depth of skeleton is represented as D;
• Total number of JCD features is represented as J , and

calculated as J =
K × (K − 1)

2
;

• 3D coordinates are represented as Bs
i = (xs

i , y
s
i , z

s
i ) for

the ith joint in the st frame;
• Collection of K joints is represented as Cs =

(Bs
1, B

s
2, ..., B

s
K) for the st frame.

A. JCD Features

Joint Collection Distance (JCD) is a geometric type of
feature that is invariant to location viewpoint and was proposed
by [23]. A matrix is calculated for this feature. The values in
the matrix are the euclidean distance between pairs of joints.
We only consider the values below the diagonal as, values
on the diagonal are zero, and values above the diagonal are
duplicates. This is done to remove redundant values. As shown
in Fig. 1, boxes in blue are considered JCD features. This
matrix is computed for each frame, and each matrix is flattened
to a 1D vector which is the input to the model. Equation 1 is
the numerical representation of the JCD feature for sth frame.

JCDs =


∥
−−−→
Bs

2B
s
1∥

...
. . .

... . . .
. . .

∥
−−−−→
Bs

KBs
1∥ . . . . . . ∥

−−−−−−→
Bs

KBs
K−1∥

 (1)

Here ∥
−−−→
Bs

iB
s
j∥ is the Euclidean distance between Bs

i and
Bs

j while (i ̸= j).

B. Motion Feature (Slow and Fast)

To monitor changes in the temporal domain, motion-relevant
features are extracted from cartesian coordinates. Features are

Fig. 1. JCD features matrix representation
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extracted in terms of slow and fast motion and numerically
they are computed using equations 2 and 3 respectively.

Mk
slow = Cs+1 − Cs, s ∈ 1, 2, 3, ..., S − 1; (2)

Mk
fast = Cs+2 − Cs, s ∈ 1, 2, 3, ..., S − 2; (3)

Here Mk
slow and Mk

fast denote the two motion features. The
output from the equations is reshaped to a 1D vector. Then
linear interpolation is applied to resize Mk

fast as M
[1,....,K/2]
fast

and Mk
slow as M

[1,....,K]
fast . This is done to match the input

feature of slow and fast motion with other features.

C. Normalized Cartesian Joints Features

(a) JHMDB (b) FPHAB (c) SHREC

Fig. 2. Skeleton with the marked pivot point for the three datasets

To increase spatial information for actions with weak global
trajectories, NCJ features are utilized. We normalize the carte-
sian coordinates with respect to a pivot point. In the case of
a human skeleton (JHMDB), the pivot point is hip joint. For
hand skeleton, pivot point is wrist joint for FPHAB and palm
joint for SHREC. The pivot point for the three datasets is show
in Fig. 2. Equation 4 is used to extract NCJ for each joint.

NCJs
i = Bs

i −Bs
piv (4)

The obtained sequence is flattened which is fed to the model
as input.

D. Velocity and Acceleration Features

Motion features are just using two consecutive frames
(slow), or one frame skipped (fast), which does not give an
in-depth information for the joints kinematics. To capture this
information we proposed two features that are velocity and
acceleration. Velocity is used to define the speed and direction
of the joints and change in speed is captured by acceleration.

Skeleton joints sequences can be considered as continuous
and differentiable over time. The second-order Tayler approx-
imation can be considered as a window around the current
time step (s). The partial derivatives ∂Cs and ∂2Cs can be
defined by expanding around the current pose Cs. Equation
5 and 6 are used to estimate the partial derivatives that are
called velocity and acceleration respectively. We are using a
temporal window of 5 frames, that is centered at the current
frame Cs being processed.

∂Cs = V s = Cc+1 − Cs−1, s ∈ 2, 3, 4, ..., S − 1; (5)

∂2Cs = As = Cs+2+Cs−2−2Cs, s ∈ 3, 4, 5, ..., S−2; (6)

Where V k and Ak denotes the velocity and acceleration.
The results are reshaped to a 1D vector and interpolation is
applied similar to slow and fast motion features to keep the
dimension of the features consistent with the other features.

E. Joint Correlation Feature

To correlate dynamically changing joints for different ac-
tions and datasets, embedding bock are used. There are em-
bedding blocks for each input vector. The embedding blocks
uses one Dimensional convolution layer (1D convNet) with a
different number of filters to learn the correlation of the input
features for each input vector. All the outputs from individual
embedding blocks are concatenated at the final stage of the
embedding module. As shown in Fig. 3. Detailed parameters
of the model are given in Table I.

III. EXPERIMENTATION

Three different datasets are used to conduct the experiments.
The data sets are split into two sets, training, and testing.
Each dataset is evaluated individually, based on the calculated
accuracy with respect to its classes. Hyperparameters are tuned
to obtain the best possible results.

A. Datasets Used

We selected three skeleton-based action recognition
datasets, SHREC [25], JHMDB [27] and FPHAB [26]. Various
properties of datasets are given in Table II. RGB data for these
datasets are available but we have only used the skeleton infor-
mation for our experiments. Each sample represents sequential
skeleton information. This means if we have a video of 10
frames, then that sample will have 10 skeletons. The SHERC
and FPHAB skeleton is in 3D, and have 22 and 21 joints
respectively. While the JHMDB skeleton is in 2D and has 15
joints.

B. Train/Test Splits

The train/test splits are made according to the distribution
specified by the authors of the three datasets. The sample
numbers for each dataset for the two splits are mentioned in
Table III and their split ratio is as follows.

• SHERC a 70/30 split is made.
• FPHAB a 50/50 split is made.
• JHMDB a 70/30 split is made, with three different

combinations of samples.

C. Setup for Evaluation

There are two cases for evaluating SHERC dataset. First is
the 14 gesture case and second is the 28 gestures case. JHMDB
is evaluated with 3 different combinations of data distributions
and results are the averaged. The FPHAB dataset is evaluated
for the 45 classes using the normalized data provided.
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Fig. 3. Proposed architecture. New branches are marked in Blue. Fc (fully connected layers). ”2xConv1D (3,2*filters)/2” (two 1D CNN layers with kernel
size=3 & channel=2*filter with a Maxpooling of stride 2. Filter is set as 64.

TABLE II. PROPERTIES OF DATASETS

Property/
Datasets Number of Samples Joints Count Skeleton Depth (D) Type of Dataset Action Count

SHERC 2,800 22 3 Hand 14 & 28
JHMDB 928 15 2 Body 21
FPHAB 1,175 21 3 Hand 45

TABLE III. SAMPLES DISTRIBUTION

Dataset Train Test
SHERC 1960 840
FPHAB 600 575

JHMDB
660 268
658 270
663 265

D. Implementation Details

Since the network is small we are training with a batch size
equal to the number of samples. Google Colaboratory is being
used for training/testing and the GPU being utilized is a Tesla
P100. Adam optimizer is used with the parameters β1 = 0.9,
and β2 = 0.999. The learning rate is set to 1e−3 for the first
600 epochs and 1e−4 for the last 600 epochs.

IV. RESULTS
A. Accuracy Comparison

From Table IV an improvement of 0.7% and 1.1% for the 14
and 28 actions respectively, of SHERC dataset, For JHMDB

dataset accuracy is improved by 2% and for FPHAB 1.7%
improvement in accuracy is seen when compared with TD-
net accuracies. Comparison with state of the art algorithms
is given in Table V, VI and VII for SHERC, JHMDB and
FPHAB datasets respectively.

B. Parameter Comparison

In Table VIII we can see that there is an average increase of
6% in parameters when compared with TD-net and increase
of 9% when compared with DD-net. Originally the DD-net is
about 1.82M parameters and TD-net is 1.88M parameters.

C. Discussion

Two new features were added to the model which increased
the parameters slightly, from 1.8 million to 2 million. The
additional parameters do not have any effect on the execution
time. Secondly, a reliable annotation of the pose points is
required, when some pose points are missing method might
fail for some classes. From Table VIII we can see the total
parameters for our model are around 2 million, from which we
can say this is a relatively small model as compared to models
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TABLE IV. ACCURACY COMPARISON WITH DD-NET & TD-NET

Method Accuracy
SHERC JHMDB FPHAB

DD-Net [23] 94.6% 91.9% 77.2% 90.0%
TD-Net [24] 95.0% 92.4% 79.3% 93.2%

Proposed Model 95.7% 93.5% 81.3% 94.9%

TABLE V. SHREC RESULTS AND COMPARISON

Method Accuracy
14 Gestures 28 Gestures

Key-frame CNN [25] 82.9% 71.9%
CNN+LSTM [29] 89.8% 86.3%

MFA-Net [30] 91.3% 86.6%
STA-Res-TCN [31] 93.6% 90.7%

DD-Net [23] 94.6% 91.9%
TD-Net [24] 95.0% 92.4%

Proposed Model 95.7% 93.5%

TABLE VI. JHMDB RESULTS AND COMPARISON

Method Accuracy
STAR-net [32] 64.3%

PoTion [33] 67.9%
DD-Net [23] 77.2%
TD-Net [24] 79.3%

Proposed Model 81.3%

TABLE VII. FPHAB RESULTS AND COMPARISON

Method Accuracy
LSTM 3D-GT [26] 56.8%
PA-ResGCN [34] 65.5%

DD-Net [23] 90.0%
TD-Net [24] 93.2%

Proposed Model 94.9%

TABLE VIII. PARAMETERS COMPARISON

Method Datasets
SHERC FPHAB JHMDB

Proposed Model
(Parameters) 2.01M 1.97M

Percentage Change
from TD-Net [24] +6.20% +5.88%

Percentage Change
from DD-Net [23] +9.31% +8.82%

used for image-based approaches which have parameters more
than 20 million. Fig. 4 gives the general system overview of
the proposed methodology.

V. CONCLUSION

The proposed study introduces a model with triple feature
and quad motion network (TQ-net), as we are using three
geometric features and four motion features. An improvement
in accuracy is seen for all three datasets, 0.7% and 1.1% for
SHERC, 1.7% for FPHAB and 2% for JHMDB. The model
parameters are increased by 6-9% by the addition of the 2

Fig. 4. System Overview

new motion features (Acceleration & Velocity). As the model
is very simple with very few parameters real-time application
is a possibility while utilizing pose estimation tools. In the
future, we are planning on adding additional features to the
model, and building an application using a live video feed and
classifying using the trained model weights.
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